Dark Web Pattern Recognition and Crime Analysis Using Machine Intelligence
Romil Rawat, Shrikant Telang, P. William, Upinder Kaur, Om Kumar C.U

Data stealing is a major concern on the internet as hackers and criminals have begun using simple tricks to hack social networks and violate privacy. Cyber-attack methods are progressively modern, and obstructing the attack is increasingly troublesome, regardless of whether countermeasures are taken. The Dark Web especially presents challenges to information privacy and security due to anonymous behaviors and the unavailability of data. To better understand and prevent cyberattacks, it is vital to have a forecast of cyberattacks, proper safety measures, and viable use of cyber-intelligence that empowers these activities. Dark Web Pattern Recognition and Crime Analysis Using Machine Intelligence discusses cyberattacks, security, and safety measures to protect data and presents the shortcomings faced by researchers and practitioners due to the unavailability of information about the Dark Web. Attacker techniques in these Dark Web environments are highlighted, along with intrusion detection practices and crawling of hidden content. Covering a range of topics such as malware and fog computing, this reference work is ideal for researchers, academicians, practitioners, industry professionals, computer scientists, scholars, instructors, and students.

Издательство:
Information Science Reference
Год издания:
2022
ISBN:
978-1-6684-3942-5
ISBN:
978-1-6684-3944-9
ISBN:
978-1-6684-3945-6
Нельзя скачать PDF (9.4 MB) Нельзя скачать EPUB (22.7 MB)
Вы находитесь на официальном сайте библиотеки МФТИ, здесь представлен каталог электронных книг, доступных для скачивания и чтения студентам и сотрудникам МФТИ, а также посетителям сайта, находящимся в локальной сети МФТИ. Для доступа к полным текстам необходимо пройти авторизацию на портале https://profile.mipt.ru, после чего вернуться на сайт библиотеки https://books.mipt.ru. В случае возникновения затруднений при выполнении указанных действий, пожалуйста, свяжитесь с нами.
Если Вы считаете нужным сообщить об опечатке, ошибке или о другой проблеме, Вы можете это сделать.