Deep Learning Techniques and Optimization Strategies in Big Data Analytics
J. Joshua Thomas, Pinar Karagoz, B. Bazeer Ahamed, Pandian Vasant

Many approaches have sprouted from artificial intelligence (AI) and produced major breakthroughs in the computer science and engineering industries. Deep learning is a method that is transforming the world of data and analytics. Optimization of this new approach is still unclear, however, and there's a need for research on the various applications and techniques of deep learning in the field of computing. Deep Learning Techniques and Optimization Strategies in Big Data Analytics is a collection of innovative research on the methods and applications of deep learning strategies in the fields of computer science and information systems. While highlighting topics including data integration, computational modeling, and scheduling systems, this book is ideally designed for engineers, IT specialists, data analysts, data scientists, engineers, researchers, academicians, and students seeking current research on deep learning methods and its application in the digital industry.

Издательство:
Engineering Science Reference
Год издания:
2020
ISBN:
978-1-7998-1192-3
ISBN:
978-1-7998-1194-7
ISBN:
978-1-7998-1195-4
Нельзя скачать PDF (13.1 MB) Нельзя скачать EPUB (25.1 MB)
Вы находитесь на официальном сайте библиотеки МФТИ, здесь представлен каталог электронных книг, доступных для скачивания и чтения студентам и сотрудникам МФТИ, а также посетителям сайта, находящимся в локальной сети МФТИ. Для доступа к полным текстам необходимо пройти авторизацию на портале https://profile.mipt.ru, после чего вернуться на сайт библиотеки https://books.mipt.ru. В случае возникновения затруднений при выполнении указанных действий, пожалуйста, свяжитесь с нами.
Если Вы считаете нужным сообщить об опечатке, ошибке или о другой проблеме, Вы можете это сделать.