Lectures on the Topology of 3-Manifolds : An Introduction to the Casson Invariant
Nikolai Saveliev

Progress in low-dimensional topology has been very quick in the last three decades, leading to the solutions of many difficult problems. Among the earlier highlights of this period was Casson's λ-invariant that was instrumental in proving the vanishing of the Rohlin invariant of homotopy 3-spheres. The proof of the three-dimensional Poincaré conjecture has rendered this application moot but hardly made Casson's contribution less relevant: in fact, a lot of modern day topology, including a multitude of Floer homology theories, can be traced back to his λ-invariant. The principal goal of this book, now in its second revised edition, remains providing an introduction to the low-dimensional topology and Casson's theory; it also reaches out, when appropriate, to more recent research topics. The book covers some classical material, such as Heegaard splittings, Dehn surgery, and invariants of knots and links. It then proceeds through the Kirby calculus and Rohlin's theorem to Casson's invariant and its applications, and concludes with a brief overview of recent developments. The book will be accessible to graduate students in mathematics and theoretical physics familiar with some elementary algebraic and differential topology, including the fundamental group, basic homology theory, transversality, and Poincaré duality on manifolds.

Издательство:
De Gruyter
Год издания:
2011
ISBN:
978-3-1102-5035-0
ISBN:
978-3-1102-5036-7
Нельзя скачать PDF (3.4 MB)
Вы находитесь на официальном сайте библиотеки МФТИ, здесь представлен каталог электронных книг, доступных для скачивания и чтения студентам и сотрудникам МФТИ, а также посетителям сайта, находящимся в локальной сети МФТИ. Для доступа к полным текстам необходимо пройти авторизацию на портале https://profile.mipt.ru, после чего вернуться на сайт библиотеки https://books.mipt.ru. В случае возникновения затруднений при выполнении указанных действий, пожалуйста, свяжитесь с нами.
Если Вы считаете нужным сообщить об опечатке, ошибке или о другой проблеме, Вы можете это сделать.